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ABSTRACT 
In this paper, the parameters of a genetic network for rice 
flowering time control have been estimated using a multi-
objective genetic algorithm approach. We have modified the 
recently introduced concept of fuzzy dominance to hybridize the 
well-known Nelder Mead Simplex algorithm for better 
exploitation with a multi-objective genetic algorithm. A co-
evolutionary approach is proposed to adapt the fuzzy dominance 
parameters. Additional changes to the previous approach have 
also been incorporated here for faster convergence, including 
elitism. Our results suggest that this hybrid algorithm performs 
significantly better than NSGA-II, a standard algorithm for multi-
objective optimization. 
 

Categories and Subject Descriptors 
I.2.8 [Artificial Intelligence]: Problem Solving, Control Methods, 
and Search – heuristic methods. 

General Terms 
Algorithms, Design. 

Keywords 
Multi-objective, simplex, hybrid, genomics. 

 
1. GENE REGULATORY NETWORK 
MODELS 
Molecular geneticists are rapidly deciphering the genomes of a 
great many organisms. As of December 2004, 243 organisms had 
completely sequenced genomes with another 1,002 in progress 
[1].The current challenge is to understand how gene networks 
within each organism function and interact with the environment 
to determine observed traits (i.e., phenotypes). In the agricultural 
contexts familiar to the authors, this is called the “genotype to 
phenotype” problem and is considered to be the most significant 
issue confronting crop improvement efforts today [2]. 
 
Recently, our group has begun to model networks of important 
plant genes at the expression level [3, 4, 5, 6]. These models 
extrapolate phenotypes by explicitly tracking the status of key 

genetic developmental switches, accumulators, etc. Estimating 
parameters for such models requires efficient, multi-dimensional, 
multi-objective, and derivative-free global algorithms. High 
dimensionality is an issue due to the large numbers of genes. 
Multi-objective optimization is appropriate because (i) multiple 
data types (continuous, discrete, and/or categorical) for both 
dependent and independent variables strain the design of a single 
objective function, (ii) individual data sets from different sources 
often contain within- or between-set inconsistencies not apparent 
in metadata, and (iii) the models are incomplete and, therefore, 
may not be equally consistent with every data set. Because actual 
biophysical systems cannot be internally inconsistent, Pareto 
fronts are ideally single points. However, when data and/or model 
inconsistencies exist, the size of the front is an indication of their 
magnitude. Finally, nonlinearities and data discontinuities 
generate exceptionally rough, multi-modal response surfaces (e.g., 
[5]) that mandate global, derivative free methods. 
 
This paper extends the algorithm first presented in [7] that has 
these features. The algorithm and enhancements are described 
along with tests based on the following single-gene model that 
posses the features just described. In [3,4] a model was proposed 
for the messenger RNA levels of HEADING DATE 1 (Hd1), an 
important flowering time control gene in rice (Oryza sativa). The 
model was based on data in [8] collected under short-days (SD) 
and long-days (LD). This model, now extended to include 
temperature effects, is given by the equations:  
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+ μ, where A is amplitude, p is period, θ is phase angle, μ is the 

mean clock input (set to 1 in this paper). 
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Data for parameter estimation were obtained from rice plants (cv. 
Nipponbare) reared in a growth chamber under SD (L=10 and 
D=14 hrs) at 20° or 28°C. On sampling days leave samples were 
collected and quick frozen in liquid nitrogen. Total RNA was 
extracted and purified using the Triazol LS reagent according to 
the manufacturer’s instructions (Invitrogen Life Technologies). 
cDNA was sysnthesized using 1 μg total RNA (iSCRIPT; 
BioRad) and mRNA levels were quantitated using real-time RT-
PCR in a BioRad iCycler using iQ Syber Green Supermix and 
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Hd1-specific oligonucleotides. Hd1 state variable data (equations 
1,2) are presented as dimensionless ΔΔCt values normalized by 
OsGAPDH expression levels as a control.  
 
2. THE MULTI-OBJECTIVE HYBRID 
APPROACH  
2.1 Multi-objective Optimization 
Evolutionary algorithms have emerged as one of the most popular 
approaches for the complex optimization problems. They draw 
upon Darwinian paradigms of evolution to search through the 
solution space (the set of all possible solutions). Starting with a set 
(or population) of solutions, in each generation of the algorithm, 
new solutions are created from older ones by means of two 
operations, mutation and crossover. Mutation is accomplished by 
imparting a small, usually random perturbation to the solution. In 
a manner similar to the Darwinian paradigm of survival of the 
fittest, only the better solutions are allowed to remain in a 
population, the degree of optimality of the solution being assessed 
through a measure called fitness.  
 
When dealing with optimization problems with multiple 
objectives, the conventional concept of optimality does not hold 
well [9, 19, 11]. Hence, the concepts of dominance and Pareto-
optimality are applied. Without a loss of generality, if we assume 
that the optimization problem involves minimizing each objective 

(.),ie Mi ...1= , a solution u is said to dominate over another 
solution v iff },,,2,1{ Mi …∈∀ )()( veue ii ≤  with at least one of 
the inequalities being strict, i.e. for each objective, u  is better 
than or equal to v  and better in at least one objective. This 
relationship is represented as vu . In a population of solution 
vectors, the set of all non-dominating solutions is called the Pareto 
front. In other words, if S  is the population, the Pareto Front Γ  
is given by, 

{ } )3()(,| vuSvSu ¬∈∀∈=Γ   
The simplistic approach of aggregating multiple objectives into a 
single one often fails to produce good results. It produces only a 
single solution. Multi-objective optimization on the other hand 
involves extracting the entire Pareto front from the solution space. 
In recent years, many evolutionary algorithms for multi-objective 
optimization have been proposed [12, 13].  
 
2.2 Fuzzy Dominance 
Assume an overall minimization problem involving M objective 
functions ei(.), i = 1 … M. The solution space is denoted as 

nℜ⊂Ψ . Given a monotonically non-decreasing function 

)(⋅dom
iμ , whose range is in [0, 1], },,2,1{ ni …∈ such 

that 0)0( =dom
iμ , solution Ψ∈u  is said to i-dominate 

solution Ψ∈v , if and only if )()( veue ii < . This relationship can 
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Fuzzy dominance can be regarded as a fuzzy relationship vu F
i  

between u  and v . Solution Ψ∈u  is said to fuzzy dominate 

solution Ψ∈v  if and only if },,,2,1{ Mi …∈∀ vu F
i . This 

relationship can be denoted as vu F . The degree of fuzzy 

dominance can be defined by invoking the concept of fuzzy 
intersection and using a t-norm,  
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Given a population of solutions Ψ⊂S , a solution Sv∈  is said 
to be fuzzy dominated in S  iff it is fuzzy dominated by any other 
solution Su∈ . In this case, the degree of fuzzy dominance can be 
computed by performing a union operation over every 
possible ( )vu Fdomμ , carried out using t-co norms as, 

∪
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∈
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In this manner, each solution can be assigned a single measure to 
reflect the amount it dominates others in a population. Non-
dominated individuals within a solution will be assigned zero 
fuzzy dominance, as for any non-dominated 
individual )( vu F

i
dom
iμ . 

 
Further details of this concept can be found in [7]. In the present 
work, the membership )( vu F
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where, )()( uevee iii −=Δ . The union and intersection operators 
follow the standard min and max definitions [14]. 
 
2.3 The Fuzzy Simplex Genetic Algorithm 
Fuzzy dominance time makes it possible to assign a single 
measure of fitness to multiple individuals. Computing the mutual 
fuzzy dominance in a population of individuals enables local 
gradient descent based techniques to be applied in a multi-
objective framework. In [7] a strategy was proposed that applied a 
local search procedure, the Nelder-Mead algorithm, in conjunction 
with a genetic algorithm.  
 
A simplex in n -dimensions consists of 1+n  solutions ku , 

}1,2,1{ += nk …  which are its vertices. In a plane, this 
corresponds to a triangle. The solutions are evaluated in each step 
and the worst solution w  is identified. The centroid of the 
simplex is then evaluated, excluding the worst solution and the 
worst point is reflected along the centroid. If wuc

k
k −= ∑  is the 

centroid, the reflected solution is 
)( wccr −+=    (7) 

Usually, the worst point w  is replaced with the reflected point r  
in the simplex, but if the r is better than any solution in the 
simplex, the simplex is further expanded as, 

)( wccre −+= η    (8)  
where η  is called the expansion coefficient. However, if the 
reflected solution r  is worse than w , the simplex is contracted 
and the reflected solution is placed on the same side of the 
centroid. When solution r  is not worse than w , but worse than 
any other solution in the simplex, the simplex is still contracted, 
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but the reflection is allowed to remain on the other side of the 
simplex’s centroid. Reflection is carried out as follows, 

)( wccrc −±= κ    (9) 
In the above equation, κ  is called the contraction coefficient. 
Solution w  is replaced with the new one, r , er , or cr  in the next 
step. The simplex algorithm is allowed to run for multiple steps 
before it converges. 
 
Fuzzy dominance is the objective function to which Nelder-Mead 
is applied. This allows the Nelder-Mead algorithm to push 
solutions towards regions of lower dominance, i.e. the Pareto 
front.  
In the earlier technique, the Nelder-Mead simplex search was 
incorporated within a multi-objective genetic algorithm. Within 
each generation, 1+n  solutions were selected randomly from the 
population, and a fixed number of iterations of the Nelder-Mead 
procedure were applied. Selecting points from the population of 
solutions for the Nelder-Mead algorithm, either randomly, or 
using some other ordering technique such as picking fitter 
solutions, has been used routinely in the literature on GA-simplex 
hybrid algorithms [7, 15, 16, 17]. Unfortunately, the Nelder-Mead 
algorithm fails to reach a local minimum when the corners of the 
simplex are spread too far apart in the search space. This is 
because in a complex landscape, a planar approximation of a large 
region of the front, that the simplex attempts to fit, may not be 
feasible. This research proposes the use of the k-means clustering 
algorithm to select the corners of the simplex [7, 15, 16, 17]. 
 
Using K-means clustering, a total of K cluster centers, Kcc ....1  are 
generated randomly in the search space. Then a two-step iterative 
process adjusts the positions of the cluster centers. In the first step 
the algorithm computes the cluster center that lies closest to each 
point in the population. Any point iu  is said to belong to cluster 

kc  iff ||)(||minarg '' kik cuk −= . The second step replaces the 

cluster center with the average of all the points, i.e., ∑
∈

=
ki cu

ik uc . 

K-means clustering breaks up the population into closely spaced 
clusters. We have applied the K-means algorithm to identify such 
clusters before applying the Nelder-Mead algorithm to each 
cluster. Specifically, at the beginning of each generation of the 
hybrid algorithm, the entire population is clustered. A few clusters 
are picked for the application of the Nelder-Mead algorithm. 
When there are more than 1+n  solutions, the vertices are selected 
at random from within the cluster. On the other hand, when the 
cluster size is too small, the cluster is simply ignored. A fraction 
of the offspring population is obtained from the Nelder-Mead 
algorithm, while the rest of the offspring is obtained by the genetic 
operators of selection, crossover and mutation. 
 
A binary tournament selection is implemented in the genetic 
algorithm that selected two individuals at random from the 
population with replacement, and picks the one with the least 
fuzzy dominance. An offspring t , was computed from two 
parents u  and v  in the following manner, 

vut )1( ζζ −+=    (10) 
where ζ is a uniformly distributed random number in [0, 1]. 
 

Solutions were mutated with a probability of β , by adding a 
random number with zero mean, that followed a Gaussian 
distribution with a spread σ , according to, 

),0( σNuu +=    (11) 
The fuzzy logic parameters in [7] were fixed at preset values that 
was a fraction of the range of values that the function throughout 
the population. Although the algorithm was able to converge 
rapidly towards the Pareto front of the solution space, the spread 
of the final front obtained was highly localized. Much of the effort 
in current multi-objective optimization is targeted towards finding 
solutions that are not only close to the Pareto front, but also that 
sample the front at approximately regular intervals. The present 
work rectifies this shortcoming by applying a co-evolutionary 
method to adapt the fuzzy logic parameters; .,....,1, Mii =Δ  
While there is considerable scope for improvement in spacing 
individuals along the front, speedup in the algorithm’s 
convergence can also be accomplished. In [7] where values for the 
parameters associated with membership functions ( iΔ s) were 
held constant, it has been argued that for simple monotonic 
landscapes the simplex is “flipped” in a direction orthogonal to the 
non-dominated front. In the present research these values can co-
evolve. Therefore the direction along which the “flipping” occurs 
can be controlled. Furthermore, co-evolving these parameters aids 
the genetic algorithm as well. As the population advances towards 
the Pareto front, the parameters adapt so that the advance can be 
made in the direction which allows faster progress towards the 
Pareto front. This is depicted in Figure 1 for a two-dimensional 
objective function space. The co-evolutionary approach is 
discussed in the following subsection.  

 
3. THE CO-EVOLUTIONARY 
ALGORITHM 
The co-evolutionary approach treats the set of parameters of the 
hybrid algorithm as its individual solutions. However, to 
distinguish between the individuals of the main algorithm, we will 
call the individuals of the co-evolutionary process as simply the 
parameter vectors. Because of the low dimensionality of the 
search space, a simple (1+1)-ES (evolutionary strategy) has been 
considered for co-adapting the parameter vectors. The fitness 
function of each vector is designed to take into account both the 
spread along the Pareto front of the main algorithm, as well as its 
rate of convergence. 

Δ1< Δ2

Δ1= Δ2

Δ1> Δ2

e2

e1

Δ1< Δ2

Δ1= Δ2

Δ1> Δ2

e2

e1
Figure 1. Influence of the fuzzy parameters 
on the direction of progress of the front.
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For each solution in the non-dominated front, the hyper-area of the 
hyper-rectangle formed by the solution and the origin as its 
extremities can be a rough measure of the proximity of the 
closeness of the solution to the origin. In [18] the union of the 
hyper-area of all the non-dominated solutions is considered as a 
measure of proximity of the entire front to the origin. In 
minimization problems such as ours, where the ideal point is the 
origin, this hyper-area A(S) covered by a set of non-dominated 
solutions S, shown in Figure 2 is a good measure of quality. 
 
In order to measure the quality of the distribution of a non-
dominated front, the algorithm borrows a feature from [19], where 
a method is suggested to break up a set of solutions into groups 
based on the angles they subtend with the axes. For the two-
dimensional case that this paper considers, a scalar measure is 
obtained for each solution v, 

)()(
)()(

)(
2
2

2
1

2
2

2
1

veve
veve

v
+

−
=σ   (12) 

It can be shown that the loci of all points with constant values of σ 
will be straight lines intersecting the origin as shown in Figure 3. 
 
After the σ’s of the non-dominated set are computed, the 
algorithm divides the set into different intervals as shown in 
Figure 3. Each interval corresponds to a range of values of σ. 
When dividing the range into L intervals, the lth interval would 
contain solutions whose σ’s lie within the range [(½L-l)/L, (½L-
l+1)/L]. Following this division, the number of solutions in each 
range is computed. If the number of solutions in the lth interval is 
nl, the entropy of the set is computed as, 

 ∑−=
l

ll
n
n

n
n

S )log()(η   (13) 

where S is the set of non-dominated solutions whose size is n. 
This entropy gives an effective measure of the distribution 
obtained by the algorithm. A higher value if )(Sη reflects a better 
spread of the solutions. This new measure is an innovation of the 
present research. 
 
This article uses the ratio, )()( SASη  as a measure of how good 
a set S is. In order to measure the effectiveness of a parameter 
vector, the improvement in this ratio in a single iteration is taken 

as the fitness. The co-evolutionary process maintains only a single 
parameter vector that it perturbs and applies to the main algorithm. 
The Aη  improvement is computed after one generation of the 
main algorithm. If it produces more improvement than the one 
recorded by the parent vector, the latter gets replaced by the 
mutant; otherwise, the mutated vector is discarded.  

 
4. RESULTS 
The proposed algorithm was implemented to predict the Heading 
date (Hd1) at 28oC and 20oC for Short Day (SD) period by 
evolving the parameters of equation (1). The results obtained were 
compared with NSGA-II [13]. For both the algorithms a 
population size of 100 was used. The mutation and crossover 
probabilities were fixed at 0.1 and 0.7 respectively. For the co-
evolution in the proposed method (the Fuzzy Simplex Genetic 
Algorithm, or FSGA), a mutation probability of 0.1 was used. 
Two fitness functions were defined as a function of mean squared 
error (MSE) between the experimental values and predicted values 
of Hd1 data at 28oC and 20oC, making the problem a multi-
objective problem with two objectives. These two objectives have 
to be simultaneously minimized by the multi-objective algorithms. 
The model for the prediction uses a temperature dependency, 
hence making it possible to predict for both the temperatures 
simultaneously. The actual fitness function used is a modification 
of MSE as given below, 
 

321 ** fffe =    (14) 
where, 

||11|| exp1 simHdHdf −=   (15) 

 )01(2 ≤= simHdcountf   (16) 
and, 
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The error function has three different terms. The first term is the 
MSE between the experimental data and simulated data by the 
evolved equation. The second part is the number of times the 
simulated curve of Hd1 changes its sign. Without using this term 
in the fitness measure during evolution of the parameters, the 
solutions were trying to minimize the MSE by fitting a oscillating 

AA

Figure 2. Hyper-area covered by a non-
dominated set of solutions

σ1
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σ4

e2

e1

σ=-1

σ=1

σ1
σ2

σ3

σ4

e2

e1

σ=-1

σ=1

Figure 3. Lines of constant σ in the objective 
function space
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curve. The best fit curve was not a model of Hd1 but high 
frequency noise data that happened to be close to actual data 
points giving it a low MSE. From a biological stand point we 
know Hd1 cannot have negative values, so in order to avoid 
solutions which are oscillatory we multiply the fitness function by 
‘n’ which is number of times the curve takes predicted value of 
Hd1 less than zero. The third part is the function of difference 
between the areas under the curve of experimental data and 
simulated data between the same intervals. Without this term the 
algorithm fits a curve that is nearly a straight line between the 
experimental data available and is not actually trying to fit the 
form of the curve. Using the difference of area under the curve 
also in fitness forces the algorithm to find solutions that are having 
the form and reject those which do not conform to the shape. 
 
With the aforementioned fitness function both FSGA and NSGA-
II were run on same initial populations and allowed to converge to 
a good Pareto front. The FSGA converged to the front in about 
7500 function evaluations, while NSGA-II needed much higher 
number of function evaluations. Figure 4 shows the convergence 
of FSGA after 2478, 4977 and 7477 function evaluations. As 
FSGA utilizes simplex in its runs at each generation and 
depending on how simplex flips the points the number of function 
evaluations at the end of each generation varies. So we show the 
Pareto front for the nearest function evaluations at 2478, 4977 and 
7477 function evaluations. Figure 5 shows the convergence of 

NSGA-II after 2500, 5000 and 7500 function evaluations. 
Comparing the two plots we observe that FSGA has a faster 
convergence compared to NSGA-II. Figure 6 shows fronts 
obtained by both the algorithms after 7500 function evaluations. 
Figure 7 shows the evolution of the parameters of fuzzy 
dominance with each generation in one of the runs. To compare 
the performance of the algorithm without co-evolution we run the 
same population without co-evolution and using fixed values for 
both the variables at 0.5 and 1.0 for two different runs. Table 1 
shows the entropy, area under the curve and fitness values of the 
Pareto front calculated as explained earlier. We note that co-
evolution resulted in a better performance compared to runs with 
fixed values.  
 
Table 1.Comparision of non-dominated solution sets obtained 
after without co-evolution and with co-evolution. 

Δ1, Δ2 η A η/A 
0.5*range 1.3683 413.9992 .0033 
1.0*range 1.0055 1.0380 0.9687 
co-evolved 2.0479 0.9834 2.0825 

 
Figure 8 and 9 show the time series prediction of one of the 
solutions of the Pareto front compared with the experimental data. 
An inset within each plot close-ups showing the accuracy in 
prediction at specified dates. 

Figure 4. Subplots showing the non-dominated solutions front for FSGA after 2478, 4977 and 7477 function evaluations 
  

 
Figure 5. Subplots showing the non-dominated solutions front for NSGA-II after 2500, 5000 and 7500 function evaluations (Note 
the change in scale from Figure 4) 
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Figure 6. Comparison of the non-dominated solutions set 
(Pareto-front) after 7500 function evaluations for both NSGA-
II and FSGA 
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Figure 7. Coevolved parameters variation with generation for 
FSGA algorithm. 

Figure 8. Plot showing prediction and experimental values of 
Hd1 at 28oC. The inset shows a close-up of the fit for the data 
during days 27.5 to 30. 
 

 
 Figure 9. Plot showing prediction and experimental values of 
Hd1 at 20oC. The inset shows a close-up of the fit for the data 
during days 20 to 22. 
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